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1. ABSTRACT

A theoretical treatment is given showing how the size distribution of
a cloud of particles changes as the result of evaporation, combustion, or
acceleration. The general differential equation governing the concentra-
tion of particles as a function of size, position and time is formulated
for one-dimensional duct-type flows. Solutions to the differential equa-
tion are then obtained for a number of special problems of interest to
evaporation and combustion.

When molecular transfers control, the equivalent mean diameter for evap-

oration or combustion of drops is found to be approximately constant with time.

*This work was partially sponsored by the Office of Naval Research, Depart-
ment of the Navy. Reproduction in whole or in psrt is permitted for any purpose
by the United States Gevernment.




This suggests that the conventional model of a constant number of uniform
drops of varying size be replaced ty a new model having a varying number of
uniform drops of constant size. The new model predicts a lower rate of

evaporation or combustion than the conventional model.

s _INTRODUCTJION

The Problem

Many industrial processes require that a cloud of solid particles or
liquid droplets interact with the gaseous (or, somstimes, liquid) phase
in which they are dispersed. 1In certain ol these processes, there is a
spectrum of particle sizes, and, moreover, the particles change in size
by reason of the interaction. Examples include: (a) evaporation of a
cloud of 1liquid droplets; (b) growth of a liquid cloud by condensation;
(c) combustion of either solid fuel particles or liquid fuel droplets.
Normally the rate of growth (taken of course in an algebraic sense) of each
perticle will depend, among otner things, on the diameter of the particle
itself. Under such conditions, the shape of the particle spectrum will
change as time proceeds, and this naturally introduces considerable diffi-
culty into the analysis of the problem. Even when there is no change in
particle size, the spectral distribution of sizes may change; for example, if
the cloud 18 accelerated, different sizes of particles will accelerate at
different rates, and the differences in particle speeds will alter the

relative concentrations per unit volume of the several particle sizes.

Object and Plan of Investigation

It is the purpose of this paper to develop some understanding of how

the existence of a spectrum of particle sizes, couplaed with a size-dependent




growth rate, influences the processes describéd above.

First of all, we shall investigate in what way a given initiel spec-
trum changes shape. This requires formulation and solution of the govern-
ing differential equation.

Secendly, we shall look into the question of whether processes of the
type considered can indeed be treated by means of a simple model comprising
a-cloud of particles of uniform "equivalent'size.

Most of the examples will refer to evaporation or combustion, with
molecular transfer rates controlling. However, it is to be understood that

the concepts and methods are equally applicable to other processes.

Previous Work

In virtually all thecretical investigations of evaporation, combustion,
ote., the actual cloud of particles is replaced by a simple model comprising
& constant number of drops of uniform but changing size.

The actual size distribution in the combustion of pulverized coal was
considered by Hottel and Stewart [1] , but their treatment of the problem,
being essentially numerical, was rather cumbersome and not adopted to general
use.,

Probert [2] treated the size spectrum during combustion by accounting
for current drops within a certain size interval as the remains of larger
drops existing at the beginning of combustion. Although not specifically
stated by Probert, one interesting result obtainable from the calculations
was the finding that the mean size of all droplets present in the combustion
chamber in the steady state may, depending on circumstances, be either greater

or smaller than the mean size of the injected droplets.
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In the present paper, the governing equation of the partdcle spec-

trum is formulated in differentiel rather than integral form. Fortunately

the equation is such that the general form of the solution for some cases

may be found.

The resulting analysis is therefore not only simple and

straightforward, but applicable to a broad variety of practical problems.

£ (0)
£ (t)

9T O

> X

3, NOMENCLATURE

cross-sectional area of duct

constants of integration

specific heat at constant pressure of surrounding medium

diameter of particle

constant reference diameter equal to 3 at the point QG/a.Lﬂ =0

dimensionless diameter &/0% e

signifies "substantial" differentiation with respect to time,
i.e., while following a particle of fixed identity

a constant, vao/ms CpTo

see Eq. (13a)

see Eq. (13a)

JnA{_B' number of particles of size L) per unit volume of
space and per unit interval of diameter

dimensionless formof 3, (G = &*G/n,

coefficient of heat transfer; coefficient of mass transfer
signifies an arbitrary function of the indicated argument
a function of diameter, - jc?-@'/ﬁ (O)

constant in molecular growth rate law, R = - K/D"

constant in growth-rate law for radiant heat transfer, R = K,




@ x ®» & R < ptut 4 & 0 v g Z

A a> > o

2
constant in Stokes' Law for terminal velocity, .« = Ki &

latent heat per unit mass of evaporating substance

mass of gas per unit volume of space

total number of particles per unit volume at time t

number of particles per unit volume lying within the diameter
interval from £ to L +dO

see Eq. (25b)

rate of evaporation or combustion

growth rate of particle, D ©O/Dt

longitudinal distance along duct

see Eq. (25b)

time

temperature of particle

temperature of surrounding medium

velocity of particle

total volume of particles in unit volume of space

mass fraction of particle cloud which has disappeared

see Eq. (3)

see Eq. (2)

exponent in R ~ O !

dimensionlass time variable, Kt /b"'z

dimensionless time variable, kt/O*

thermal conductivity; inass diffusivity

mass density of particles

transformed distance for observer moving with cloud, 0" = s-«t

temperature difference, T = Tg -1




( ) signifies quantities pertaining to appropriate mean size for
same total mass and same rate of change of mass

( ),“, signifies quantities for conventional model having fixed number
of particles of uniform but varying size, with correct initial
mase and correct initial rate of change of mass

( )° signifies quantities at t=0

4. BASIC_CONCEPTS AND DEFINITIONS

The Particle-Size Spectrum

Assuming that the actual histogram of the size distribution of particles
may for purposes of analysis be replaced by a continuous curve, we define
the particle concentration (or spectrum ordinats), G ,a G2 J"-/J-D‘
where dn is the number of particles per unit volums of space lying within
the infinitesimal range of diameters between & and O +dL> . Then a
graph of (G versus & (Fig. la) illustrates the size distribution in
the cloud. The area under a narrow vertical strip, G4L", represents dn ,
the number of particles per unit volume having diameters within the size
range of the strip.

Dimengicpless Representation. When the shape of *the spectrum, rather
than the actual values, is of interest, it i1s convenient to employ the dimen-
sionless coordinates, Q’G/n.s G and .D/.C” =D s where o s
any convenient but fixed value of ) (for example, the value of &> cor-'
responding to the initial raximum value of G ). These normalized co-
ordinates are shown in brackets on Fig. la.

Total Number of Particles per lnit Volume, To find the total pumber

of perticles per unit volume of space, we take the total area under the




curve of Fig. la, inasmuch as

© 9 r
n = J{Jn = feaa:[.a'e J(.o/,oﬁ =n! G 4D (1)

Total Volume of Particles. Similarly, the {otal volume of particles

per unit volume of space, is given by

© o 3 é
= ? = 3 v » 3
v-%fﬁdﬂn_%f.o(;,oa=—é_.e n.fmq;au) (2)
o ° )y
and is therefors found by integrating under the spectrum curve after ihe

ordinates of the latter have been weighted by the factor D} .

The Growth Rate

The most important feature of the present analysis is the changing

size of the particles. This is described by the growth rate,
R = D&/Dt

where the operator D /Dt signifies "substantial" differentiation, i.e., R
is the rate of increase of particle diameter for a particle of fixed iden-
tity. Fovr evaporation or combustion, R would have the negative values.

The value of R depends'on the type of process (evaporation, combus-
tion, etc.); on the physical properties of the particles and &' rrounding
medium (velocity, density, viscosity, thermai conductivity, temperature
difference, etc.); and, most important for our present purpose, on the
diemeter J&r of the p;rticular particle concerned.

Mean Particle Size

One may define any number of mean sizes [3] through the generall




formula
f PCas =¥
D:(/ﬁ H 2 (3)
f° ofG a0

where o and [5 are arbitrary numbers, and 5’&/5 is the corresponding
mean diameter. For example, withe= 3 and =2 , the valus of [y, thus
obtaired is the so-called volume-surface mean diameter, i.e., the particle
diameter whose ratio of volume to surface is the same as that of the actual
particle cloud.

Equivalent Mean Size for Evaporation or_ Combustion. More pragmaticaily,

we restrict the definition of mean size to one which ia of acme use. Our
real aim is to *reat the actual particle cloud as though it were composed
of uniformly-sized particles. For the processes under consideration, it
is evident that the actual cloud and the model cloud must agree in two
respects: they must, instantaneously, have (i) the same total mass and
(11) the same rate of change of total mass. Using bars to denote quanti-
ties referring to the model cloud of uniform drops, these requirements may

be expressed as

[

J.D’GJ.D'E n &
o
f‘g‘RGJ.o : R 5°R

These may be solved simultaneously for & and M to give

5 . [o'ces .
R~ [‘oerao

© . ]3
. [Lo'Rees )

‘QS [];‘.O'JG J-G'Jz




At each instant, the model cloud containing N particles of uniform
diameter 5 will have the same mass and the same rate of evaporation or
combus.ion as the actual cloud. Here it is important to note, however,
that N is not equal to the number of particles in the actual cloud; nor
does it remain constant with the passage of time.

Examples of Practically-Significant Meap Siges. Often the dependence
of R on & may be approximated by R~ & ‘. The constant § 4s zero
when radiant heat transfer is controlling; it is equal to unity when mole-
cular transfers control; and it is equal epproximately to 0.2 when turbulent
transfers control.

From Eq. (4), the mean size is then

b5 (ra) L‘,(_?’(_.: IO
= o
, O G-

The two 1imiting values of ¢ may briefly be anticipated here:

(4a)

(1) If R 1is independent of £ , as would be the case when the process
depends on radiant heat transfer, then ¥= O , and the appropriate mean is

the volume-surface mean,

©
2
5. = Dy = Jf.ﬂ G 45
i [TOMG a0
(2) If the process depends primarily on molecular transfers (i.e., the

(4b)

relative Reynolds number is very small), then ¥ = | Y_I.] , and the
appropriate mean size is the 3/1 mean,

—t 3 -‘OJG 4.8
D-ltl = ‘0;/1 = _‘;;‘QGJ&

(40)




- =,

s e o

- 10 -

5, DIFFERENTIAL EQUATION GOVERNING

HISTORY OF PARTICLE SPECTRUM

Description of Model of Process

We consider here the flow of a discrete particle cloud in a duct
or stream tube (the latter referring to the particle flow) of variable
cross-sectional area, A, The flow i8 conesidered one-dimensional to the
extent that, over each cross-sectional area, the particle concentration, G,
the particle speed, 4 , and the particle growth rate, R , are sll uni-
form for sach particle diameter, L, G ,+ and R are all considered

to depend on particle size, longitudinal location, and time, e.g., »U-=M(-D, s,t)

The Growth Flux
A recessary preliminary to the differential equation is the deriva-
tion of an expression which indicates the flux rate at which, as a con-
sequence of growth, particles cross from sizes smaller than £ to sizes
larger than & .
Consider all the particles cmaller than & in a unit volume of
space at time t . During the time interval dt , all the perticles
will have grown at their appropriate growth rates. The increase of diameter
of those particles originally of size & is 48-= Rdt , and the number
of particles grown lerger than o0 1is therefore G R 4t (see Fig.lb).
Dividing this expression by 4t , we obtain an expression for the growth
flux:
Number of particles per unit time and
{ } GR )

per unit volume becoming larger than
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Governing Differentja)l Equatjion
We shall make a numerical accounting of only those droplets lying

within the size range £ to L +J4H in the control space of Fig. 2. At
the location s , lec the area be A and let the properties corresponding
to & be denoted by A , G , etc.; at the exit location s+ds , each

will at the same instant be larger by differential increments (JA/JS) ds,

(34/35) 45, (36/3s) ds  eto.

The numerical acco@ting of droplets in the size range from £ to
S +d4& requires a consideration of the convective fluxes into and out
of the control space, of the growth fluxes into and out of the size inter-
val, and of the rate of change of particle number within the control space
and sizs interval,

Convective Fluxeg. At location s , the number per unit volume of
droplets in the size range < to L +</Ois G40, Multiplying this
by .+ A , i.e., by the volume of space swept out per unit time by drop-
lets of this size, wo get an expression for the convective flux entering
and a corresponding one for the instantaneous flux leaving:

Rate of entry into control space = . AG 4L

Rate of exit from control space = AL AG 4> + :)Jg (“'AG“B') ds - (6b)

Growth Fluxes. Particles smaller than & grow into the size range

under consideration, and may, for our present purpose, be said to be created.

Likewise, particles larger than O +d& grow out of the size range and may
be said to be destroyed. Taking note of Eq. (5), we may accordingly write

Birth rate within control space = GR A4S
Death rate within control space = QR Ads + S%(GRA 45)4000‘ (7b)

(6a)
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Numerical Accounting. The instantaneous number of particles within
the considered size range and lying inside the control space is equal to
(GaLr )(Ads ). By setting the time rate of change of this quantity equal
to tho net rate of entry into the control space [Eq. (6a) minus Eq. (6b)] :
plus the net rate of creation within the control space [Eq. (7a) minus ('7b)] -
and simplifying, we obtain the differential equation governing the time

and space histories of the particle spectrum:

G __o - A
ASS =-5 (A6 - A3 (GR) (82)

or

L 1 26 36 1. -9 A R
G['E""“‘Ts +REI. - -54-8 (8b)

Now, since G = G (¢, s, &) , we may write

46 . J& dt 06 ds 4 06 d&
gqt At'ﬁ.—""as -L-+3_D-"J-t

Specializing this for a group of particles of fixed identity, for which
ds/d = , and JDMt* R , we obtain an expression for the rate of
change of concentration of particles of fixed identity, identified by

the substantial derivative notation, in the form

DG _ o6 oG S d IR
DE. 3L rut R --G|F 5 4 *33] (8e)

where the second equality is found by reference to Eq. (8b).
Equation (2c) shows mathematically what might be deduced as well

from purely physical considerations: that the spatial concentration of a
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certain group of particles c{ fixed identity (a) is decreased when the
particlies accelerate; (b) is decreaced when the particles pass to & sec-
tion of greater cross-sectional area; and (c) is decreased when the growth
rate increases algebraically with diameter.

General Form of Solution

To determine the time and space histories of the size spectrum, it
is necessary to find the solution of Eq. (8), subject to the appropriate
initial conditions of the problem.

Equation (8) is a linear partial differential equation of first

order. The theory of such equations [BJ shows that the general solu-
tion of this equation is of the form

H (v, ap)=0 (9a)

vhere a5 (t,5, &;6)= ¢, , Wi(t,s, 0, G)= ¢, 8nd (¢, s, 56)= ¢y
(in which ¢,, ¢, and €4 arbitrary constants of integration) are

independent solutions of the associated ordinary differential equations

e o 42 o 4L _-d6 (9b)

A.u-‘-u- JR
635 +=E £ 655

In practice, the solutions of Eq. (9b) may be troublesome, and may
indeed not be possible except in special cases where the variables may be
readily separated.

We therefore proceed to the consideration of some special cases with

the aim of discovering typical facts concerning the behavior particle spactra.
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6, THE UNIFORMLY_-MOVING CLOUD

WITH SIZE CHANGE
Specification of Model
Consider the case where all the particles move at the same constant
speed in a duct of constant area. Such might d&céur when the particfes

were carried along in a fluid stream and all particles had settled down

to the constant fluid velocity. The particle spectrum, however, changes

as the result of evaporation, combustion, ete. Then we have the simpli-
fications that 4A/Ms =0 |, dmfds=0 , and a»o-/m =0
Simplified Differepntial FEquation

With the foregoing assumptions, Eq. (8) now becomes

26 06 _ _J (10)
Transformation to Observer Moving with Cloud. If we consider an

observer moving with the particle cloud at the speed of the stream, the
stream and the imbedded particle cloud will all appear stationary. There-

fore, it is convenient to define a distance coordinate

= s-«ut (11)
which 18 the relation between distance s in the fixed reference frame
and distance 0" 1in the moving observer's reference frams. Applying the
usual procedure for interchange of variables from the €, s, &  system

to the t,07 & system, we transform Eq. (10) into

(39),,-~ [0+

ot

In fact, we may drop the subscript ¢ altogether if we remember that

Eq. (12) is valid only when the observer moves with the cloud and that

-14 -
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the resulting equation applies to a group of particles of fixed identitly.
Steady-Flow Case. It may be noted that Eq. {12) includes the special

case in which the process is steady in the stationary reference frame

(1,04, [aG/at] =0), but of course non-steady in the reference frame of

S, o
the moving ovserver.

Motionless Cloud in Stationary Medium, Alsc covered by Eq. (12) is
another case of particular interest, that in which the particle cloud is
motionless in a fixed space, the particles either growing or diminishing
in size as time proceeds. The distance coordinate 0° is then evidently
irrelevent, and may be struck from Eq. (12); this may also be seen more
directly by setting 4+ = 0 1in Eq. (10).

Growth Rate Consideratjions

Equations (9b) are indeed simplified, as we Lave seen, .by dropping
the terms 3“’/&3 and 4A/ds . To obtain the solution even to sim lified
cases, however, we must know how the growth rate R depends on & and t .
Now R depends on t to the extent that the physical properties of the
fluid medium (such as the temperature, concentration, thermal conductivity,
etc.), and of the particles, partly govern the rates of evaporation, com-
bustion, etc., and thece properties may all be functions of time. For
example, the temperature difference forcing heat transfer cdepends on how
much has already been evaporated or combusted.

Since the form of the R-t relationship is not known in advance, it
must be found by simultaneously solving the spectrum equations and the
equations goverring the changes in properties of the fluid medium and of
the particles. Consequently,the solution must involve such auxiliary
relations as the energy equation, stoichiometric equations, heat trans-

fer relationships, etc., inasmuch as these enter into the determination

- 15 -




o S e TR

- 16 -

of the rates of interaction-between the cloud and the fluid medium as
well as of the properties of the fluid madium.
as W = 1 S-D'! i "L‘!

Although the solution for G as a function of t and & cannot be
found for the general case until the R-t relationship is known, we can
avoid the simultaneous solution of the spectrum and fluid medium equa-

tions by assuming that the growth rate can be written as

L = -
%- = R = f(0)f ()

< (132)

wherein the function 'F. depends on - alone and f, .on t alone.

With this assumption we are now able to first solve the spectrum
equations, and then determine the complete relationships for the inter-
action between the particle cloud and the medium. The physical situation
to which Eq. (13a) applies is the case of a uniformly moving cloud and
medium in which (1) all particle properties are the same except the size,
and (ii) the properties of the fluid medium appesr the same to each particle.
Many real problems are approximately of this type; see, for instance, the
example given in Section 8.

General Form of Solution for Uniformly-Moving Cloud, Referring to
Eq. (9b) again, the solution to the dt, &3 equation is now

§ -t = o= ¢C,
the 4t , d & equation has the_solution
J + _r fdt = G
[}

wher T(0)= - (49/% (130)
and the d{ , 46 equation integrutes to

Gf = c3




Therefore, from Eq. (9a), the complete sclution to the problem must be
of the form

G =+ H[™ T+ [509]

(14)
where H is an arbitrary function of the arguments indicated.

Method of Determig;_gg;_Form of Arbitrary Functiop. To determine the
precise form of the function H in a particular case, we must have f, and
‘F,_ expressed algebraically in terms of 4 and t , respectively, and the
relationship between G, £, and ¢ must be known at some time, say
t=0. Putting this latter relationship into the form indicated by
Eq. (14), one obtains the solution at any other time merely through re-
placing T at €=0 by (T + f:{;_ 4t ) at any other time.

Graphicsl]l Interpretation of Solution. The solution represented by
Eq. (14) has a simple graphical interpretation. Focussing attention onr
a particular part of the cloud, i.e., o = constant, we suppose that the
spectral curve G () is known at time t = O . Let this function be
plotted (see dashed curve in Fig. 3) in the form G f versus J . At
any later time t, , the corresponding curve will be displaced without
change of shape, as indicated by the solid curve of Fig. 3. According to
Eq. (14), the value of Gf, for a given value of T at time €, must be .
equal to the value of Gf; at =0 corresponding to a value of T = 3;“*'];'&‘*

Hence the curve for time t, is simply displaced leftwards from that for +=0
+

precisely by the magnitude f :f;_ Jt 3
°
Propagative Character of Solution. The foregoing features indicate

a propagative behavior to the solution. For a given portion of the cloud,

the product Gf; , is seen to be constant for combinations of & and t

corresponding to a constant value of the function ( T~ + f: f, dt Yo
By separating variables and integrating between the limits t=0 ,

D= ,@'“o and =T , 020, we find from Eq. (13a), for a particle
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of fixed identity,

-t
Iy + [f,_dt = G (23e)

t=4
where Uy is the value of T at time t , and U:"c ois the value of J for_the
same particle at t=0 . In other words, particles of fixed identity have a
t
D, t history specified by & constant value of T+ [ #, 4t , which, by
[J

Eq. (13c), in the value U, associated with the particle at time zero.

+=0
Then Eq. (14) may be interpreted as meaning that the product G# remains
constant for particles of fixed identity.

Thus the propagative behavior noted above is associated with the fact
that the initial concentration of particles in a certain size range controls
the concentration of the same particles, but in successively different size
ranges, at all later times,

Alternative Derivaetion of Solution by Physical Copsideraticps, The
propagative behavicr may also be brought out by a derivation of Eq. (14)
based on more physical considerations. Consider a group of particles
initially (t=0 ) lying within a certain narrow size range, 40, .o . Since
the pumber of such particles &t time t 1is equal to the number at t=06
we may write

dn = Gy 4%, = G, 40
vwhere J.Dtuand d O, are, respectively, the initial and final widths of the

size interval, and G-’:: and G'—o.t are the concentrations cor-

)

responding to particles of size L __ . at time t=0 and of size L, at

time t , respectively. By the definition of T IEq. (13b)] ’
48, -fi(8,,) « T

% =e / IO, = - f, (0‘_) “U-o:,

But, for particles of fixed identity, Eq. (13c) holds. Differentiating this
at constant time, we have JT‘, = JUI,*“ . Now, assembling the foregoing
equations, we get

G f), = (6F)

O't =6
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which states that the product G f, , associated with particles of size .0-
at time ¥ is equal to the product Gf, associated with the size O, ., be-
longing to the same particles at t=0. But we have already seen that the
identity of a certain group of particles is marked by a Jrj-t relationship
given by Eq. (13c). Consequently, we may conclude thet the product G f
is a function only of(3'+.£f¥,3f) , which 18 exactly what is claimed by Eq.(14).
Cage of Consiant and Uniform Growth Rate

If the growth rate is the same, and constant, for all drops, the
integral J of Eq. (13) is simply J=-4£/R, and the general solution
to Eq. (15) 48 GR= H(L-Rt), which may be expressed alternatively as
G = H,(O-Rt). This states exactly what the assumption of constent
growth rate for all particles implies, namely, that the distribution curve
of G vs. & marches across the graph with unchanged form, the displace-
ment at any instant being Rt.

A possible application of this result is to problems in which the
growth rate is controlled by radiant heat transfer. An energy balance
in that case shows that R is independent of particle size.
Method of Treatipg Formatdon of New Drops

When the growth rate is positive, as in condensation, attention must
be given to the tact that new drops may constantly be born. The type of
solution already discussed applies cnly to those drops already present
at time zero. Assuming that, at each instant, the birth rate of new
drops per unlt volume of space is known, we may equate this to the in-
stantaneous value of GR corresponding to &H=z0¢ . This in turn yields GCoeo
as a funotion of time. Consequently, in respect to the new drops, the

form of the arbitrary function in Eq. (14) may be determined from a knowledge
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of its variation with t  for the value of J corresponding tc &=0,
and thus the general solution for the spectral history of the new drops
may be found.

7. EVAPORATION OR COMBUSTION OF A CLOUD_IN A VERY LARGE MEDIUM
Desgription of Process

To illustrate more completely the method outlined, and also to ob-

tain some practical results of value to an understanding of evaporation
and combustion, we now take up the special case of a stationary cloud
evaporating into or burning in a very large, stationary, gaseous medium.
As indicated by the preceding section, the results are also applicable
to each portion of fixed identity of a uniformly-moving cloud. 1In this
section we shall assume that the mass of the medium, relative to thaet of
the cloud, is so large that the process does not materially alter the
properties of the medium,

With this assumption, the growth rate for any portion of the cloud
(1.6., for fixed ¢ ) will depend only on diameter, and we may at once
set f,(¥)=1 . Then, remembering that R is now only a function of &
Eq. (14) becomes

G=—k'H(§T+t> (15)
where H is an arbitrary function of the indicated argument. Alter-
natively, for eny fixed portion of the cloud, Eq. (15) states that the
product GR (which varies only with &) depends only on the combined
function of & and t denoted by (T +T ). As before, the precise form
of this dependency may be found by expressing G(8) at t =0 in the form
of Eq. (15), and then replacing J (L) where it appears by{T(D) +'t) .
The Molecular Growih-Rate Law

After the particles have reached a quasi-stcady temperature, both

evapcration end combustion are controlled by the processes of heat
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transfer and mass diffusion. If we ascume no reletive moticn between the
particles uni the mediwn (or, more generally, that the Reynolds number
based on the relative speed is small), dimensional considerations require
that the coefficients of heat transfer and mass transfer follow the law
¥1124i = constant, where h 1s, respectively, the coefficient of heat
transfer or mass transfer, and A is, respectively, the thermal con-
ductivity or mass diffusivity [4] .
Since the rate of the process, and, consequently, the rate of disap-
pearance of mass from each particle, is proportional to the coefficient
h , to the surface area, and to differences in temperature and concen-
tration, we may write that O (DODt)~ hH*. Then noting that h & is
constant, we find that
R= Do/t =-K/o = § (16)
where K 1s a positive constant containing such ouantities as pure numbers,
the density and latent heat cf the particles, the temperature difference,
and the thermal conductivity and mass diffusivity of the medium. Thus we
mey evaluate

=- | 4O _ o400 - O
7 jﬁ '-j K /ZK (17)

\d

Moreover, integration of Eq. (16) for a particle of fixed identity ylelds

o t
fbd-@-:-x[at)- O - 05 = 2kt (18)

M tse

where it 1s to be understood that .Ot 2a is the diameter at t =0 of a
particle having the diameter £ at time t .,

General Solution

According to Eq. (15), the general solution to the problem considered

here is

G= .0 H]| O +2xt] (198)
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Rearranging this in dimensionless form, we have

G

0"G/n, = (-0/«0*)*‘[(0/0’)‘“9] = DH[D™+2¢] (%

2
vhere 8= Kt/8" . The advantage of the form shown in Eq. (19b) is

)

that it removes the results from any particular scale of time, size, or K ,

and expresses them in their most general form in terms of the dimension-
less time, 6 ,
graphical Method of Solution

A simple and rapid method of graphical solution is suggested by
Eq. (19b). At time t=0 , the size distribution 1s plotted in the form
of 6/D versus D o Then, for any othei time t=t, , the corresponding
curve may be found merely by sliding the original curve leftwards by the
amount 26 = ?.Kt|/.0%, as 1llustrated by Fig. 4. Then it is a simple
matter to regraph the new curve for time +t, in the conventional form
of G versus D or G versus & .
Apalytic Solution of Typical Case

These are several types of size distribution whirh may represent
atomized sprays or milled solid particles [6] . All have the features
that the curve of G versus £ starts from zero, increases with & and

then, after reaching a maximum, approaches zero again asymptotically.

Initial Size Distribution. We consider now a specific type of dis-
tribution at t=0 that embodies the foregoing features and that allows
us to draw significant conclusions by simple celculations. The distri-

=0
bution postulated at t is representeg by _ D"/z

-1 (S
D'*G = Ng (0/0')22 ° or G = De (20&)
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For very small values of £ this givus a linear distribution, while for

large values the concent.'ation approaches zero very rapidly. The con-

stants in the equation are chosen so that the initially most populous
particles (i.e., those of maximum G ) are of size &  , and the total
number of particles initially is Ne . For the process considered, the
instantaneous appropriate mean size is given by Eq. (4c). When the

latter is evaluated for the distribution of Eq. (20a), we get D= 3/&‘: V3,

vhere it is understood that [D means, for this case, BM .

Size Distribution at Any Time, Comparison of Eq. (20a) with Eq. (19b)

shows that the form of H at t=01is
- ID /l

H,..= ©

t=o

Consequently, at any other time t , the spectrum is given by

-4[m*+20] -e e:i'"’t

G= De D

(20v)

This remarkable result shows that the size distribution considered
remaine unchanged in form, the concentrations of particles of all sizes

-0
being reduced by the constant factor e .

Variatjon of Equivalent Mean Sjze, Performing the integrations of
Eqe (4c), we get the striking result that D=V3at any time. That is,

the appropriate mean size dpes not chapge, even though all particles are
becoming smaller. The explanation of this seeming paradox is that the

small particles grow smaller more rapidly than the large ones, and ul-
timately disappear entirely; as time proceeds, therefore, a relatively

greater proportion of large particles remains.

Yariation of Total Number of Particles, Frcm Eqs. (1) and (20b), we
find that the total number of particles decreases exponentially with
time, 1i.e., -0
_nW.- = e

(20c)
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Varjation of Fractjon of Masg Disappeared. The frection of the

total volume of all particles lost, which is a measure of how much mass
has disappeared through evaporation or combustion, is feund from Eqs. (2)

and (20b) as

- = Fraction Disappeared = |- %9‘ = |- e (204)
+s0

Yariation of Rate of Evaporation or Combustion. The rate of evapora-

tion or combustion is proportional to the rate of disappearance of total
volume of all particles, i.e., g~ - dV/at | prom Eq. (1) and (204),
therefore, we find that this rate also varies exponentially with timse,
-6
7’/5’3 - € (200)
Calculations_for Conventional Model Contalning Fixed Number of
Particles of Uniform but Varjsble Size, In calculations of evaporation

and combustion it is usual to assume a model in which there is a con-
stant number of particles of uniform size, the initial uniform size
being set equal to the appropriate mean size of the initial spectrum.
To see how this model ccmpares with the true state of affairs, we shall
determine, for this model, the expressions corresponding *o those of
Eqs. (20d) and (20e) for the spectrum of Eq. (20a)., Let &, and ™|,
denote respectively the uniform but variable particle size and the con-
stant number of particles for this model. Then by definition,
00.-1,:--/0', =3 Furthermore, from Eq. (18),

L8
(G) = (F3). 20 = 272 e




The fraction of the total volume of all particles which has disappeared

at time t 38 given by

3
(ﬁ.‘- 0,") /%
R SR -7 RO T

and the rate of evaporation or combustion (since %.41- J\ng ) is, in

proportion to the initial rate,

(3'/5"-),«. = (0= g’g) " (21c)

Comparison of Conventional Model with Actual Cloud. Equations (20d),

(20e), (21b), and (21c) are graphed in Fig. 5. Since by definition, the
initlel mass and initial rate of loss of mass are identical for the
spectrum and model,Fig. 5 shows directly the inaccuracies in the model.
At the beginning of the process, the two rates are equal, and consequently
the slopes of the X-curves are the same. As the process proceeds how-
ever, the rate calculated for the model is at first greater than the true
rate; this occurs because, in the true spectrum, the instantaneous mean
size does not change, whereas in the simple model, all particles grow
smaller and consequently acquire a larger growth rate (in the absolute
sense). After about 75% of the mass has disappeared (according to
spectrum calculations), the rate calculated for the model becomes smaller
than that for the spectrum; this happens because the excessively high
rate at early times so reduces the particle diameter (and the surface
area) of the model that ultimately a point must be reached where the rate
becomes less than that of the spectrum. Notwithstanding the latter
remark, at any instant the fraction disappeared is greater for the model
than for the spectrum. 1Indeed, at 6 = 1.5 , the particles of the model

have entirely vanished, while in the spectrum they never entirely vanish.
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To summarize, the model of evaporation or combustion in which the
spectrum is represented by a constant number of particles of uniform but
variable size yields too high an estimate of how much mass will have

disappeared at any given time. The table below gives some significant

comparisons.

Model Spectrum
Per cent disappearance for 6 = .55 50% 42.6%
Per cent disappearance for 6 = .905 75% 59.5%
& for 50% disappeared 555 694
6 for 75% disappeared .905 1.386
6 for 100% disappeared 1.5 ©

Proposed New Model of Particle Cloud. It is evident that the con-
ventional model incorpcrates an unwarranted optimism concerning the time
required for the process to occur. A more accurate model is suggested

by the fact that the instantaneous 55%4 corresponding to Eq. (20b) is

constant. That is, the actual spectrum may be replaced by a cloud of

particles of variable number but of uniform and constant size, with the

number of such particles decreasing at a rat al

of evaporation or combustion. Such a model, for the initial spectrum of
Eq. (20a) wovld give rates identical with those of the true spectrum.

At first it may seem peculiar to imagine particles vanishing one by one,
without dimunition of diameter; but when it is recalled that the model
is in any case a fiction to enable easy calculations, and that the number
of particles in the model cloud has no physical association with the

number in the true cloud, the seeming strangeness disappears.

It cannot be claimed that the model suggested above is identically
correct for other particle-size distributions, or for cases where R is not

inversely proportional to & . However, since the spectral curve of
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Eq. (20a) is at least typical in shape, and since R generally varies
with & to a power lying between O and -) , it seems safe to say that
the conventional medel incorporating a constant number of drops is gen-
erally over-optimistic in its estimate of rates, and that the new model
proposed is often more realistic.
Results for Nukiyama-Tapasawa Distribution

To investigate the two points mentioned in the preceding paragraph,
we now examine the Nukiyama-Tanasawa distribution, accepted as best

representing that of liquid sprays atomized by air jets [6] + The dis-

tribution equation at + =0 is

. 2 ~—2 (‘9/8") 2 -2D -
B'G = 4ne (B/o¥) e or G=4De (22a)
where the constants are so chosen that n, is the total number of drop-
lets and G is a maximum when D=1 , all at t=0 ,

Results for R =- R/&, Referring to Eq. (19b), the solution for

the size distribution at any time t 4is given by

T Vl
Y -2(D +26
G = 4D (D" +20)%c ( ) (22b)

Inasmuch as the terms in €@ cannot be brought out in a single factor,

it follows that the shape of the spectrum chenges with time. A few

of the spectral curves are plotted in Fig. éa, which shows that the

value of D for which € 1is a maximum increases slightly with time.
Evaluation of Eqs. (2) and (4c) for the size distribution of Eq. (22)

is somewhat lengthy, but the results can be expressed in terms of the

second, fourth and sixth derivatives of the modified Bessel function of




the second kind of order zerc. The results of these calculations are
plotted in Fig. 6b, which shows that the appropriate mean diameter for
this distribution actually increases with time. This result is perhaps
not too surprising after having seen the curves in Fig. 6a. This in-
crease in mean diameter, however, is not very large (about 17% when the
cloud is 75% evaporated).

Fig. 6c shows the fraction of mass disappeared vs. time for the
spectrum as well as the corresponding curves for the conventional model
with & constant number of drops of uniform but variable size, and for the
new model of constant diameter drops but varying number. The curves
il1lustrate clearly the error in using the conventional model for evapora-
ting drops. The proposed new model does not give results that coincide
exactly with the spectrum calcuvlationy; they are in error in the same
direction as the conventional model. This 1is expected becauss D actually
increases somewhat during evaporation and therefore the rate of change
of mass is less for the spectrum. However, the fraction evaporated
predicted by the proposed model is better than the conventional model
both qualitatively and quantitatively.

Results for R = Constant. The results shown in Fig. 6 are for the
case R~ & . To see what effect the natvre of the growth-rate law
has on the results, Fig. 7 shows curves analogous to those of Fig. 6,
for the same initial spectrum, but with R = constant = K,., The two
cases comprise the two extreme forms of the growth-rate law, for in the
general relationship R ~ 0'-' , § 1lies between zero (radiant heat trans-
fer controlling), and unity (molecular conduction and diffusion controlling).

Note that the appropriate mean diameter for ¥ =0 is E%_ .
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Figure 7a shows the Nukiyama Tanasawa spectrum as & whole moving
horizontally towards the origin. This result was previously derived for
any spectrum if the growth rate is constant and uniform. In Fig. 7b,
the mean diameter Dj;, 1is shown as & function of @, Kit/&* . 1In
this case the mean diameter decreases as the drops evaporate. Finally,
in comparing the fraction evaporated curves in Fig. 7c, we see that
once more the conventional model is over-optimistic about evaporation
rates. The proposed model is also in error, but the magnitude of the
error is smaller, and in the opposite direction. The proposed model
again matches the spectrum result qualitatively over the entire range.
Spectrum with Finite Diameter Rapge

In the preceding examples the diameter range for each spectrum
ranged from zero to infinity. As & consequence, &n infinite amount of
time 18 required to evaporate all the droplets. Since the upper diameter
limit i1s finite in any actuval case, we now investigate this effect using
the molecular growth-rate law of Eq. (16) and the initial droplet spec-
trum of Eq. (20a). Thus at t =0 we have

foe “ o« D <D

G = |o

meXiso

D> Dmax
< w0

The correct mean diameter is given by

Duax, B/

B - D " ap
ID'““'L _D‘/Z
De 4D

where D, .18 not constant but can be expressed as

2 .
mma.x = Dn-l -26
<=0

s
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The results of these calculations as well us the results of using the
conventional model are shown in Fig. 8,
Choice of Initial Spectrum

The initial particle distribution G for any case is usually ob-
tained by fitting a curve to experimental data, This procedure suggests
trying to fit a curve of certain algebraic form such that later cal-
culations for & yield the result O = constent. This objective can

-
be achisved for the case of £ (LH)~-& if we fit the data to the

form
-~ _bc_n-:

G =.¢1..°'e,

vhere @ and b are arbitrary constants. Equation (20a) is a specific
example of this for the case of ¥=1) ,
Conclusions of Droplet Evaporat Stu
The general results obtained from study of Fig. 6, 7 and 8 are that:
i) The conventional model is optimistic about evaporation rates

of the spectrum,.

i1) The proposed modal {s more accurate in predicting evapora-
tion rates, at least for I e.p and lb‘e-p spectra, for the range of
growth rates from radiation controlling ( ¥=© ) to molecular phenomena
controlling (¥=1) ) the process.

111) If only a small part of the mass of the droplet spectrum is
o be evaporated, it is immeterial which model is used because the dia-
meter variation is so small (L& ~ cube root of mass remaining).

iv) For evaporation of the last remnants of a droplet spectrum
with D,,*® , the results of the conventional model differ radically

from those of the spectrum and of the proposed model. The latter two




indicate that 100% evaporation is reached only as t approaches «© .
If, however, Dy,, is finite, the spectrum enalysis shows 100% evapora-
tion is reached in finite time while the proposed mode: still requires
infinite time. Except for this question of time for 100% evaporation,
the difference between the results of the proposed model and of the
gpectrum 2nalysis is small if lD.,.,# 303 + The phyeical reason for this
behavior is that very little of the mass in the droplet spectrum we
are considering is in the range from D=3 toD = ., If the ques=-
tion of time for 100% evaporation is of importance, the answer cen |
easily be obtained by considering just the evaporation of the largest
drop.

8, EVAPORATION OR GOMBUSTION OF A STATIONARY
CLOUD_IN A "SMALL" MEDIUM

Form of Growth-Rate Law

When the growth rate depends on time, as for example whew evapora-
tion or combustion modifies the temperature and other properties of
the medium, it is not valid to let f, (+)= 1 in Eq. (13a).

In this event, if we retain the growth-rate lav R= f (&) fi(t) ,
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vith £ (8) ~ o' s Eq. (14) shows that all the results prasented in Eqs.

(19), (20), and (22) and in Figs. 5 and 6 remain valid, provided only
that wherever L appears it must be replaced by f:'f,_(t') dt
Case of Evaporation in a Gaseous Medivm

The details of completing the solution will vary from case to case,
and may best be illustrated by a specific example. Consider evapora-
tion into a cloud of gas, with the gas temperature falling by virtue
of the latent heat absorption. Then an energy balance for a droplet

(neglecting sen~ills heat effects), equating the rate of heat transfer
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to the rate of latent heat change, yields
T
h To'T= - PLE O (DO/py)

whence, with the postulate of molecular heat conduction (h&/2 =2 ) we get

R= D&/ot = -4AT JpX O o
Neglecting the variation of A with time, we may express this as
R= f,(L&)f,(t) where f = -4 lto/fxﬁ'and £ = %—

An energy balance between the entire droplet cloud and the entire

gas mass, equating the total latent heat supplied to the decrease of
enthalpy of the gas, gives

Vn,",cP (Ta’.—T? = rl\ﬁ (l— ¥f,) (23b)

Moreover, we have, by definition,

Tz T-T= (T (7T = % - (75T
and thus ve obtain
CERCANEREY (23e)

= Ez ptV/myc,t,

Now, for each valuve of f;,_ (4) ot = f (t'-:'/r..)at , the value of
is known either from an analyta.ical solution Le-g., Eq. (20d)] or,
if necessary, from a numerical integration, keeping in mind that the
value of & appearing in, say, Eq. (20d) is now to be interpreted as
(K/.o"') J;Er/f' dt | Moreover, Eq. (23¢) gives a relationship
between */%, and ~ , assuming of course that the constants X, |,
L , f s cpand \{/m‘, are all known to begin with. Consequently,
we have in hand a relationship between Tt /¥, and f (‘l'/'r:.) dt o Then,

from the expression
t

J't
,L,=:E_J:1:Jt - %%‘z"ﬁ’t’“’
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